-
Notifications
You must be signed in to change notification settings - Fork 14.7k
[CIR] Mul CompoundAssignment support for ComplexType #152354
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[CIR] Mul CompoundAssignment support for ComplexType #152354
Conversation
@llvm/pr-subscribers-clangir @llvm/pr-subscribers-clang Author: Amr Hesham (AmrDeveloper) ChangesThis change adds support for Mul CompoundAssignment for ComplexType Full diff: https://github.com/llvm/llvm-project/pull/152354.diff 2 Files Affected:
diff --git a/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp b/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
index c22cf607df7d8..536765f58ee4d 100644
--- a/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenExprComplex.cpp
@@ -171,6 +171,10 @@ class ComplexExprEmitter : public StmtVisitor<ComplexExprEmitter, mlir::Value> {
mlir::Value VisitBinSubAssign(const CompoundAssignOperator *e) {
return emitCompoundAssign(e, &ComplexExprEmitter::emitBinSub);
}
+
+ mlir::Value VisitBinMulAssign(const CompoundAssignOperator *e) {
+ return emitCompoundAssign(e, &ComplexExprEmitter::emitBinMul);
+ }
};
} // namespace
@@ -813,7 +817,7 @@ using CompoundFunc =
static CompoundFunc getComplexOp(BinaryOperatorKind op) {
switch (op) {
case BO_MulAssign:
- llvm_unreachable("getComplexOp: BO_MulAssign");
+ return &ComplexExprEmitter::emitBinMul;
case BO_DivAssign:
llvm_unreachable("getComplexOp: BO_DivAssign");
case BO_SubAssign:
diff --git a/clang/test/CIR/CodeGen/complex-compound-assignment.cpp b/clang/test/CIR/CodeGen/complex-compound-assignment.cpp
index 35a8aa693f8ed..7a3d0fc8987f6 100644
--- a/clang/test/CIR/CodeGen/complex-compound-assignment.cpp
+++ b/clang/test/CIR/CodeGen/complex-compound-assignment.cpp
@@ -286,3 +286,167 @@ void foo4() {
// CXX_OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 1
// CXX_OGCG: store i32 %[[B_REAL]], ptr %[[C_REAL_PTR]], align 4
// CXX_OGCG: store i32 %[[B_IMAG]], ptr %[[C_IMAG_PTR]], align 4
+
+void foo5() {
+ int _Complex a;
+ int _Complex b;
+ b *= a;
+}
+
+// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["a"]
+// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>, ["b"]
+// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
+// CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!s32i>>, !cir.complex<!s32i>
+// CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
+// CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!s32i> -> !s32i
+// CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
+// CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!s32i> -> !s32i
+// CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !s32i
+// CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !s32i
+// CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !s32i
+// CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !s32i
+// CIR: %[[RESULT_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !s32i
+// CIR: %[[RESULT_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !s32i
+// CIR: %[[RESULT:.*]] = cir.complex.create %[[RESULT_REAL]], %[[RESULT_IMAG]] : !s32i -> !cir.complex<!s32i>
+// CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex<!s32i>, !cir.ptr<!cir.complex<!s32i>>
+
+// LLVM: %[[A_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
+// LLVM: %[[B_ADDR:.*]] = alloca { i32, i32 }, i64 1, align 4
+// LLVM: %[[TMP_A:.*]] = load { i32, i32 }, ptr %[[A_ADDR]], align 4
+// LLVM: %[[TMP_B:.*]] = load { i32, i32 }, ptr %[[B_ADDR]], align 4
+// LLVM: %[[B_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 0
+// LLVM: %[[B_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_B]], 1
+// LLVM: %[[A_REAL:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 0
+// LLVM: %[[A_IMAG:.*]] = extractvalue { i32, i32 } %[[TMP_A]], 1
+// LLVM: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]]
+// LLVM: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]]
+// LLVM: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]]
+// LLVM: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]]
+// LLVM: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]]
+// LLVM: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BR_AI]], %[[MUL_BI_AR]]
+// LLVM: %[[MUL_A_B:.*]] = insertvalue { i32, i32 } {{.*}}, i32 %[[RESULT_REAL]], 0
+// LLVM: %[[RESULT:.*]] = insertvalue { i32, i32 } %[[MUL_A_B]], i32 %[[RESULT_IMAG]], 1
+// LLVM: store { i32, i32 } %[[RESULT]], ptr %[[B_ADDR]], align 4
+
+// OGCG: %[[A_ADDR:.*]] = alloca { i32, i32 }, align 4
+// OGCG: %[[B_ADDR:.*]] = alloca { i32, i32 }, align 4
+// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG: %[[A_REAL:.*]] = load i32, ptr %[[A_REAL_PTR]], align 4
+// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG: %[[A_IMAG:.*]] = load i32, ptr %[[A_IMAG_PTR]], align 4
+// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG: %[[B_REAL:.*]] = load i32, ptr %[[B_REAL_PTR]], align 4
+// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG: %[[B_IMAG:.*]] = load i32, ptr %[[B_IMAG_PTR]], align 4
+// OGCG: %[[MUL_BR_AR:.*]] = mul i32 %[[B_REAL]], %[[A_REAL]]
+// OGCG: %[[MUL_BI_AI:.*]] = mul i32 %[[B_IMAG]], %[[A_IMAG]]
+// OGCG: %[[RESULT_REAL:.*]] = sub i32 %[[MUL_BR_AR]], %[[MUL_BI_AI]]
+// OGCG: %[[MUL_BI_AR:.*]] = mul i32 %[[B_IMAG]], %[[A_REAL]]
+// OGCG: %[[MUL_BR_AI:.*]] = mul i32 %[[B_REAL]], %[[A_IMAG]]
+// OGCG: %[[RESULT_IMAG:.*]] = add i32 %[[MUL_BI_AR]], %[[MUL_BR_AI]]
+// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG: store i32 %[[RESULT_REAL]], ptr %[[B_REAL_PTR]], align 4
+// OGCG: store i32 %[[RESULT_IMAG]], ptr %[[B_IMAG_PTR]], align 4
+
+void foo6() {
+ float _Complex a;
+ float _Complex b;
+ b *= a;
+}
+
+// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["a"]
+// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>, ["b"]
+// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR: %[[TMP_B:.*]] = cir.load{{.*}} %[[B_ADDR]] : !cir.ptr<!cir.complex<!cir.float>>, !cir.complex<!cir.float>
+// CIR: %[[B_REAL:.*]] = cir.complex.real %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR: %[[B_IMAG:.*]] = cir.complex.imag %[[TMP_B]] : !cir.complex<!cir.float> -> !cir.float
+// CIR: %[[A_REAL:.*]] = cir.complex.real %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR: %[[A_IMAG:.*]] = cir.complex.imag %[[TMP_A]] : !cir.complex<!cir.float> -> !cir.float
+// CIR: %[[MUL_BR_AR:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_REAL]]) : !cir.float
+// CIR: %[[MUL_BI_AI:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_IMAG]]) : !cir.float
+// CIR: %[[MUL_BR_AI:.*]] = cir.binop(mul, %[[B_REAL]], %[[A_IMAG]]) : !cir.float
+// CIR: %[[MUL_BI_AR:.*]] = cir.binop(mul, %[[B_IMAG]], %[[A_REAL]]) : !cir.float
+// CIR: %[[C_REAL:.*]] = cir.binop(sub, %[[MUL_BR_AR]], %[[MUL_BI_AI]]) : !cir.float
+// CIR: %[[C_IMAG:.*]] = cir.binop(add, %[[MUL_BR_AI]], %[[MUL_BI_AR]]) : !cir.float
+// CIR: %[[COMPLEX:.*]] = cir.complex.create %[[C_REAL]], %[[C_IMAG]] : !cir.float -> !cir.complex<!cir.float>
+// CIR: %[[IS_C_REAL_NAN:.*]] = cir.cmp(ne, %[[C_REAL]], %[[C_REAL]]) : !cir.float, !cir.bool
+// CIR: %[[IS_C_IMAG_NAN:.*]] = cir.cmp(ne, %[[C_IMAG]], %[[C_IMAG]]) : !cir.float, !cir.bool
+// CIR: %[[CONST_FALSE:.*]] = cir.const #false
+// CIR: %[[SELECT_CONDITION:.*]] = cir.select if %[[IS_C_REAL_NAN]] then %[[IS_C_IMAG_NAN]] else %[[CONST_FALSE]] : (!cir.bool, !cir.bool, !cir.bool) -> !cir.bool
+// CIR: %[[RESULT:.*]] = cir.ternary(%[[SELECT_CONDITION]], true {
+// CIR: %[[LIBC_COMPLEX:.*]] = cir.call @__mulsc3(%[[B_REAL]], %[[B_IMAG]], %[[A_REAL]], %[[A_IMAG]]) : (!cir.float, !cir.float, !cir.float, !cir.float) -> !cir.complex<!cir.float>
+// CIR: cir.yield %[[LIBC_COMPLEX]] : !cir.complex<!cir.float>
+// CIR: }, false {
+// CIR: cir.yield %[[COMPLEX]] : !cir.complex<!cir.float>
+// CIR: }) : (!cir.bool) -> !cir.complex<!cir.float>
+// CIR: cir.store{{.*}} %[[RESULT]], %[[B_ADDR]] : !cir.complex<!cir.float>, !cir.ptr<!cir.complex<!cir.float>>
+
+// LLVM: %[[A_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM: %[[B_ADDR:.*]] = alloca { float, float }, i64 1, align 4
+// LLVM: %[[TMP_A:.*]] = load { float, float }, ptr %[[A_ADDR]], align 4
+// LLVM: %[[TMP_B:.*]] = load { float, float }, ptr %[[B_ADDR]], align 4
+// LLVM: %[[B_REAL:.*]] = extractvalue { float, float } %[[TMP_B]], 0
+// LLVM: %[[B_IMAG:.*]] = extractvalue { float, float } %[[TMP_B]], 1
+// LLVM: %[[A_REAL:.*]] = extractvalue { float, float } %[[TMP_A]], 0
+// LLVM: %[[A_IMAG:.*]] = extractvalue { float, float } %[[TMP_A]], 1
+// LLVM: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]]
+// LLVM: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]]
+// LLVM: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]]
+// LLVM: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]]
+// LLVM: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]]
+// LLVM: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]]
+// LLVM: %[[MUL_A_B:.*]] = insertvalue { float, float } {{.*}}, float %[[C_REAL]], 0
+// LLVM: %[[COMPLEX:.*]] = insertvalue { float, float } %[[MUL_A_B]], float %[[C_IMAG]], 1
+// LLVM: %[[IS_C_REAL_NAN:.*]] = fcmp une float %[[C_REAL]], %[[C_REAL]]
+// LLVM: %[[IS_C_IMAG_NAN:.*]] = fcmp une float %[[C_IMAG]], %[[C_IMAG]]
+// LLVM: %[[SELECT_CONDITION:.*]] = and i1 %[[IS_C_REAL_NAN]], %[[IS_C_IMAG_NAN]]
+// LLVM: br i1 %[[SELECT_CONDITION]], label %[[THEN_LABEL:.*]], label %[[ELSE_LABEL:.*]]
+// LLVM: [[THEN_LABEL]]:
+// LLVM: %[[LIBC_COMPLEX:.*]] = call { float, float } @__mulsc3(float %[[B_REAL]], float %[[B_IMAG]], float %[[A_REAL]], float %[[A_IMAG]])
+// LLVM: br label %[[PHI_BRANCH:.*]]
+// LLVM: [[ELSE_LABEL]]:
+// LLVM: br label %[[PHI_BRANCH:]]
+// LLVM: [[PHI_BRANCH:]]:
+// LLVM: %[[RESULT:.*]] = phi { float, float } [ %[[COMPLEX]], %[[ELSE_LABEL]] ], [ %[[LIBC_COMPLEX]], %[[THEN_LABEL]] ]
+// LLVM: br label %[[END_LABEL:.*]]
+// LLVM: [[END_LABEL]]:
+// LLVM: store { float, float } %[[RESULT]], ptr %[[B_ADDR]], align 4
+
+// OGCG: %[[A_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG: %[[B_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG: %[[COMPLEX_CALL_ADDR:.*]] = alloca { float, float }, align 4
+// OGCG: %[[A_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 0
+// OGCG: %[[A_REAL:.*]] = load float, ptr %[[A_REAL_PTR]], align 4
+// OGCG: %[[A_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[A_ADDR]], i32 0, i32 1
+// OGCG: %[[A_IMAG:.*]] = load float, ptr %[[A_IMAG_PTR]], align 4
+// OGCG: %[[B_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG: %[[B_REAL:.*]] = load float, ptr %[[B_REAL_PTR]], align 4
+// OGCG: %[[B_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG: %[[B_IMAG:.*]] = load float, ptr %[[B_IMAG_PTR]], align 4
+// OGCG: %[[MUL_BR_AR:.*]] = fmul float %[[B_REAL]], %[[A_REAL]]
+// OGCG: %[[MUL_BI_AI:.*]] = fmul float %[[B_IMAG]], %[[A_IMAG]]
+// OGCG: %[[MUL_BR_AI:.*]] = fmul float %[[B_REAL]], %[[A_IMAG]]
+// OGCG: %[[MUL_BI_AR:.*]] = fmul float %[[B_IMAG]], %[[A_REAL]]
+// OGCG: %[[C_REAL:.*]] = fsub float %[[MUL_BR_AR]], %[[MUL_BI_AI]]
+// OGCG: %[[C_IMAG:.*]] = fadd float %[[MUL_BR_AI]], %[[MUL_BI_AR]]
+// OGCG: %[[IS_C_REAL_NAN:.*]] = fcmp uno float %[[C_REAL]], %[[C_REAL]]
+// OGCG: br i1 %[[IS_C_REAL_NAN]], label %[[COMPLEX_IS_IMAG_NAN:.*]], label %[[END_LABEL:.*]], !prof !2
+// OGCG: [[COMPLEX_IS_IMAG_NAN]]:
+// OGCG: %[[IS_C_IMAG_NAN:.*]] = fcmp uno float %[[C_IMAG]], %[[C_IMAG]]
+// OGCG: br i1 %[[IS_C_IMAG_NAN]], label %[[COMPLEX_LIB_CALL:.*]], label %[[END_LABEL]], !prof !2
+// OGCG: [[COMPLEX_LIB_CALL]]:
+// OGCG: %[[CALL_RESULT:.*]] = call{{.*}} <2 x float> @__mulsc3(float noundef %[[B_REAL]], float noundef %[[B_IMAG]], float noundef %[[A_REAL]], float noundef %[[A_IMAG]])
+// OGCG: store <2 x float> %[[CALL_RESULT]], ptr %[[COMPLEX_CALL_ADDR]], align 4
+// OGCG: %[[COMPLEX_CALL_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 0
+// OGCG: %[[COMPLEX_CALL_REAL:.*]] = load float, ptr %[[COMPLEX_CALL_REAL_PTR]], align 4
+// OGCG: %[[COMPLEX_CALL_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[COMPLEX_CALL_ADDR]], i32 0, i32 1
+// OGCG: %[[COMPLEX_CALL_IMAG:.*]] = load float, ptr %[[COMPLEX_CALL_IMAG_PTR]], align 4
+// OGCG: br label %[[END_LABEL]]
+// OGCG: [[END_LABEL]]:
+// OGCG: %[[FINAL_REAL:.*]] = phi float [ %[[C_REAL]], %[[ENTRY:.*]] ], [ %[[C_REAL]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_REAL]], %[[COMPLEX_LIB_CALL]] ]
+// OGCG: %[[FINAL_IMAG:.*]] = phi float [ %[[C_IMAG]], %[[ENTRY]] ], [ %[[C_IMAG]], %[[COMPLEX_IS_IMAG_NAN]] ], [ %[[COMPLEX_CALL_IMAG]], %[[COMPLEX_LIB_CALL]] ]
+// OGCG: %[[C_REAL_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 0
+// OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { float, float }, ptr %[[B_ADDR]], i32 0, i32 1
+// OGCG: store float %[[FINAL_REAL]], ptr %[[C_REAL_PTR]], align 4
+// OGCG: store float %[[FINAL_IMAG]], ptr %[[C_IMAG_PTR]], align 4
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This looks good, with a request for extra test cases.
@@ -286,3 +286,167 @@ void foo4() { | |||
// CXX_OGCG: %[[C_IMAG_PTR:.*]] = getelementptr inbounds nuw { i32, i32 }, ptr %[[C_ADDR]], i32 0, i32 1 | |||
// CXX_OGCG: store i32 %[[B_REAL]], ptr %[[C_REAL_PTR]], align 4 | |||
// CXX_OGCG: store i32 %[[B_IMAG]], ptr %[[C_IMAG_PTR]], align 4 | |||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Maybe add test cases for complex += real?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Done
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
lgtm
LLVM Buildbot has detected a new failure on builder Full details are available at: https://lab.llvm.org/buildbot/#/builders/10/builds/11057 Here is the relevant piece of the build log for the reference
|
This change adds support for Mul CompoundAssignment for ComplexType
#141365